Biomechanics of Overarm Throwing

Deborah L. King, PhD

Ithaca College, Department of Exercise and Sport Science

<u>Outline</u>

- Review Fundamental Concepts
- Breakdown Throwing Motion
 - Identify Key Movements
 - Examine Joint Loads
- Buildup Throwing Motion
 - o Maximize Performance
 - o Minimize Injury Risk
- Summary

Summation of Speed/Kinetic Chain

- Energy of proximal segment transfers to distal
- Distal segment starts movement when proximal reaches maximum angular velocity
- As distal reaches maximal velocity, proximal will have lost its energy
- Smaller distal segment achieves higher angular velocity due to smaller moment of inertia
- Progressive increase in distal end point velocity
- Critical feature is lagging of joint rotations letting energy from one segment move the adjacent segment.

Well timed muscle actions can:

- Increase velocity of distal segment by introduction of + muscle torque
- Increase velocity of distal segment via stretch shorten cycle (previous eccentric action)

Poorly timed muscle actions can:

- Absorb energy decreasing transfer to adjacent segment
- Increase work done by proximal muscles
- Increase load on joint structures

Skill Breakdown

Four Primary Motions Responsible for Power Generation

- Trunk (2 separate motions)
 - o Forward translation
 - Rotation
- Shoulder Rotation
- Elbow Extension
- Wrist Flexion

Trunk

- Forward translation followed by
- Rotation 100 to 200 ms prior to release
- Stems from GRFs and trunk torque

Timing of Trunk Motion is Important

- Faster throws tend to rotate trunk later
 - o Allows better transfer of momentum to upper arm
 - Less int. rot. torque at shoulder
 - Less elbow valgus torque
- Early rotation results in
 - Shoulder musculature absorbing energy from trunk
 - o Increased work done by shoulder (IR) to compensate for lost energy
 - o Inefficient transfer of energy to hand & ball
 - o Potentially harmful torques at shoulder

Shoulder Rotation

Muscles are primarily responsible for shoulder internal rotation

Elbow Extension

- Induced by motions of trunk and shoulder
- Trunk and upper arm angular velocity create elbow extension (late cocking phase)
- Elbow extension velocity increases which increases forearm angular velocity
- Forearm angular velocity further increases elbow extension (acceleration phase)

Wrist Flexion

- energy originally from trunk & shoulder
- · enhanced with elbow & forearm energy

Typical Motions

Initial shoulder motion (Stride & Cocking) is about:

- 90 degrees AB
- 15 horizontal AB
- 170 deg external rotation

Muscle Activity:

High:

• Deltoid, Traps, Supraspinitus

Moderate:

Infraspinitus, Teres Minor, Serratus

External rotation torque on humerus at elbow with subsequent internal rotation torque at shoulder from musculature

- o 17+ Nm in kids
- o 30 60 Nm in adults

Shoulder distraction force

- Half body weight in kids
- o 1-1.75 BW in adolescents & adults

Arm Acceleration

- Rapid internal shoulder rotation of 80 degrees occurs in .03 to .05 seconds
- Scapular protraction occurs to maintain humeral head positioning
- GH Joint forces can be 860 N

Muscle Activity:

Start of Acceleration:

o Anterior Muscles Concentric - Pec & Deltoid

End of Acceleration

Posterior Muscles Eccentric – Trapezius, Subscapularis, Latisimmus, Serratus

Arm Deceleration

- · Adduction & internal rotation continue but slowing
- Joint loads high as arm decelerates
 - Posterior & inferior shear (near .5 BW) & compressive forces (just > BW)
- Motion in deceleration & follow through critical for dissipating forces over larger ROM
- See peak rotation velocities in deceleration before muscles begin to slow arm

Muscle Activity:

 Posterior muscles have high eccentric forces - Infraspinitus, teres major and minor, latisimus

Scapula - Critical Link from Trunk to Shoulder Motions

- Allow transfer of energy from force generating leg muscles to force delivery motions of
- Protract and retract to maintain congruous socket for head of humerus
 - safety zone for glenohumeral angulation

- Stable base for origin of arm muscles that control arm motion & provide joint compression
- Correct & active positioning & movement throughout motion critical
- Incorrect positioning & movement = Scapular dyskinesia
 - Poor alignment of humeral head stress (tension/compression) on joint capsule, labrum, rotator cuff

Over compensation of shoulder muscles – fatigue, further dyskinesia, increased incongruence, increased joint capsule, labrum, rotator cuff stress, ...

Skill Build-up

Techniques associated with good power delivery to ball & reduces joint loads

• Skilled players with faster throws can have less torque

- Timing of trunk rotation are key
 - Later trunk rotation = Less shoulder torque
 - Later trunk rotation, less shoulder external rotation, and less elbow flexion at peak valgus = Less elbow valgus torque

What to look for on the field:

May depend on age but:

 Not leading towards plate with hip with adolescent players associated with less torque and greater efficiency

• Hand on Top & Arm in Throwing position – may reduce hyperangulation – association with lower torque and greater pitch efficiency

Closed shoulder & stride to home, closed shoulder specifically associated with less torque & increased efficiency

• Contralateral trunk lean, overarm versus sidearm, is associated with less torque

Summary

Summation of Speed or Kinetic Chain critical for developing power & reduces torque on shoulder

- 4 joint motions are responsible for power: trunk translation & rotation, shoulder internal rotation, elbow extension, & writs flexion
- Trunk rotation occurring after stride contact helps increase speed & decrease torque at shoulder and elbow
- Scapula must be able to maintain positioning and movement to:
 - o funnel energy from legs to arm for delivery
 - o maintain congruence between glenoid fossa and humeral head with safety zone
 - Provide stable base for arm muscles to create force
- Observable techniques such as:
 - Later trunk rotation
 - Hand & top & closed shoulder
 - Overarm versus side arm throwing motion
- Have less torque & greater efficiency

References

Escamilla, R. & Andrews, J. (2009). Shoulder muscle recruitment patterns and related biomechanics during upper extremity sports. *Sports Medicine*, *39*, 569-590.

Stodden, D., Fleisig, G., McLean, S., & Andrews, J. (2005). Relationship of biomechanical factors to baseball pitch velocity: Within pitcher variation. *Journal of Applied Biomechanics*, *21*, 44-58.

Escamilla, R., Barrentine, S., Fleisig, G., Zheng, N., Tkada, Y., Kinsely, D., & Andrews, J. (2007). Pitching biomechanics as a pitcher approaches muscular fatigue during a simulated baseball game. American *Journal of Sports Medicine*, *35*, 23-33.

Aguinaldo, A. Buttermore, J., & Chambers, H. (2007). Effects of upper trunk rotation on shoulder joint torque among baseball pitchers of various levels. *Human Kinetics*, *23*, 42-51.

Aguinalda, A. & Chambers, H. (2009). Correlation of throwing mechanics with elbow valgus load in adult baseball pitchers. *American Journal of Sports Medicine*, *37*, 10, 2043-2048.

Sabick, M., Kim, Y-K, Torry, M., Keirns, M., & Hawkins, R. (2005). Biomechanics of the shoulder in youth baseball pitchers: Implications for the development of proximal humeral epiphysiolysis and humeral retrotorsion. *American Journal of Sports Medicine*, *33*, 1716 – 1722.

Chu, Y., Fleisig, G., Simpson, K., & Andrews, J. (2009). Biomechanical comparison between elite female and male baseball pitchers. *Journal of Applied Biomechanics*, *25*, 22-31.

Dun, S., Kingsley, D., Fleisig, G., Loftice, J., & Andrews, J. (2008). The relationship between age and baseball pitching kinematics in professional baseball pitchers. *American Journal of Sports Medicine, 36*, 137-141.

Neal, R., Snyder, C., & Kroonenberg, P. (1991). Individual difference in segment interactions in throwing. *Human Movement Science*, *10*, 653-676.

Hirashima, M., Tamane, K., Nakmura, Y., & Ohtsuki, T. (2008). Kinetic chain of overarm throwing in terms of joint rotations revealed by induced acceleration analysis. *Journal of Biomechanics*, *41*, 2874-2883.

Davis, J. T., Limpisvasti, O., Fluhme, D., Mohr, K. J., Yocum, L. A., ElAttrache, N. S., & Jobe, F. W. (2009). The Effect of Pitching Biomechanics on the Upper Extremity in Youth and Adolescent Baseball Pitchers. *American Journal of Sports Medicine*, *37*(8), 1484-1491.