Biomechanics of Overarm Throwing

Deborah L. King, PhD

Ithaca College, Department of Exercise and Sport Science

Outline

• Review Fundamental Concepts
• Breakdown Throwing Motion
 o Identify Key Movements
 o Examine Joint Loads
• Buildup Throwing Motion
 o Maximize Performance
 o Minimize Injury Risk
• Summary

Summation of Speed/Kinetic Chain

• Energy of proximal segment transfers to distal
• Distal segment starts movement when proximal reaches maximum angular velocity
• As distal reaches maximal velocity, proximal will have lost its energy
• Smaller distal segment achieves higher angular velocity due to smaller moment of inertia
• Progressive increase in distal end point velocity
• Critical feature is lagging of joint rotations letting energy from one segment move the adjacent segment.

Well timed muscle actions can:

• Increase velocity of distal segment by introduction of + muscle torque
• Increase velocity of distal segment via stretch shorten cycle (previous eccentric action)
Poorly timed muscle actions can:

- Absorb energy decreasing transfer to adjacent segment
- Increase work done by proximal muscles
- Increase load on joint structures

Skill Breakdown

Four Primary Motions Responsible for Power Generation

- Trunk (2 separate motions)
 - Forward translation
 - Rotation
- Shoulder Rotation
- Elbow Extension
- Wrist Flexion
Trunk

- Forward translation followed by
- Rotation 100 to 200 ms prior to release
- Stems from GRFs and trunk torque

Timing of Trunk Motion is Important

- Faster throws tend to **rotate trunk later**
 - Allows better transfer of momentum to upper arm
 - Less int. rot. torque at shoulder
 - Less elbow valgus torque
- **Early rotation** results in
 - Shoulder musculature absorbing energy from trunk
 - Increased work done by shoulder (IR) to compensate for lost energy
 - Inefficient transfer of energy to hand & ball
 - Potentially harmful torques at shoulder

Shoulder Rotation

- Muscles are primarily responsible for shoulder internal rotation

Elbow Extension

- Induced by motions of trunk and shoulder
- Trunk and upper arm angular velocity create elbow extension (late cocking phase)
- Elbow extension velocity increases which increases forearm angular velocity
- Forearm angular velocity further increases elbow extension (acceleration phase)

Wrist Flexion

- energy originally from trunk & shoulder
- enhanced with elbow & forearm energy

Typical Motions

Initial shoulder motion (Stride & Cocking) is about:
- 90 degrees AB
- 15 horizontal AB
- 170 deg external rotation

Muscle Activity:
- **High:**
 - Deltoid, Traps, Supraspinitus
- **Moderate:**
 - Infraspinitus, Teres Minor, Serratus
External rotation torque on humerus at elbow with subsequent internal rotation torque at shoulder from musculature

- 17+ Nm in kids
- 30 - 60 Nm in adults

Shoulder distraction force

- Half body weight in kids
- 1- 1.75 BW in adolescents & adults
Arm Acceleration

- Rapid internal shoulder rotation of 80 degrees occurs in .03 to .05 seconds
- Scapular protraction occurs to maintain humeral head positioning
- GH Joint forces can be 860 N

Muscle Activity:
- Start of Acceleration:
 - Anterior Muscles Concentric - Pec & Deltoid
- End of Acceleration:
 - Posterior Muscles Eccentric – Trapezius, Subscapularis, Latisimmus, Serratus

Arm Deceleration

- Adduction & internal rotation continue but slowing
- Joint loads high as arm decelerates
 - Posterior & inferior shear (near .5 BW) & compressive forces (just > BW)
- Motion in deceleration & follow through critical for dissipating forces over larger ROM
- See peak rotation velocities in deceleration before muscles begin to slow arm

Muscle Activity:
- Posterior muscles have high eccentric forces - Infraspinitus, teres major and minor, latisimus

Scapula - Critical Link from Trunk to Shoulder Motions

- Allow transfer of energy from force generating leg muscles to force delivery motions of
- Protract and retract to maintain congruous socket for head of humerus
 - safety zone for glenohumeral angulation

- Stable base for origin of arm muscles that control arm motion & provide joint compression
- Correct & active positioning & movement throughout motion critical
- Incorrect positioning & movement = Scapular dyskinesia
 - Poor alignment of humeral head – stress (tension/compression) on joint capsule, labrum, rotator cuff
- Over compensation of shoulder muscles – fatigue, further dyskinesia, increased incongruence, increased joint capsule, labrum, rotator cuff stress, ...

Skill Build-up

Techniques associated with good power delivery to ball & reduces joint loads

- Skilled players with faster throws can have less torque

![Graph showing comparison between different skill levels](image)

- Timing of trunk rotation are key
 - Later trunk rotation = Less shoulder torque
 - Later trunk rotation, less shoulder external rotation, and less elbow flexion at peak valgus = Less elbow valgus torque

What to look for on the field:

May depend on age but:

- Not leading towards plate with hip with adolescent players associated with less torque and greater efficiency
• Hand on Top & Arm in Throwing position – may reduce hyperangulation – association with lower torque and greater pitch efficiency

• Closed shoulder & stride to home, closed shoulder specifically associated with less torque & increased efficiency

• Contralateral trunk lean, overarm versus sidearm, is associated with less torque
Summary
Summation of Speed or Kinetic Chain critical for developing power & reduces torque on shoulder

• 4 joint motions are responsible for power: trunk translation & rotation, shoulder internal rotation, elbow extension, & wrists flexion

• Trunk rotation occurring after stride contact helps increase speed & decrease torque at shoulder and elbow

• Scapula must be able to maintain positioning and movement to:
 o funnel energy from legs to arm for delivery
 o maintain congruence between glenoid fossa and humeral head with safety zone
 o Provide stable base for arm muscles to create force

• Observable techniques such as:
 o Later trunk rotation
 o Hand & top & closed shoulder
 o Overarm versus side arm throwing motion

• Have less torque & greater efficiency
References

